2,520 research outputs found

    DRL Enabled Coverage and Capacity Optimization in STAR-RIS Assisted Networks

    Full text link
    Simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RISs) is a promising passive device that contributes to a full-space coverage via transmitting and reflecting the incident signal simultaneously. As a new paradigm in wireless communications, how to analyze the coverage and capacity performance of STAR-RISs becomes essential but challenging. To solve the coverage and capacity optimization (CCO) problem in STAR-RIS assisted networks, a multi-objective proximal policy optimization (MO-PPO) algorithm is proposed to handle long-term benefits than conventional optimization algorithms. To strike a balance between each objective, the MO-PPO algorithm provides a set of optimal solutions to form a Pareto front (PF), where any solution on the PF is regarded as an optimal result. Moreover, in order to improve the performance of the MO-PPO algorithm, two update strategies, i.e., action-value-based update strategy (AVUS) and loss function-based update strategy (LFUS), are investigated. For the AVUS, the improved point is to integrate the action values of both coverage and capacity and then update the loss function. For the LFUS, the improved point is only to assign dynamic weights for both loss functions of coverage and capacity, while the weights are calculated by a min-norm solver at every update. The numerical results demonstrated that the investigated update strategies outperform the fixed weights MO optimization algorithms in different cases, which includes a different number of sample grids, the number of STAR-RISs, the number of elements in the STAR-RISs, and the size of STAR-RISs. Additionally, the STAR-RIS assisted networks achieve better performance than conventional wireless networks without STAR-RISs. Moreover, with the same bandwidth, millimeter wave is able to provide higher capacity than sub-6 GHz, but at a cost of smaller coverage.Comment: arXiv admin note: text overlap with arXiv:2204.0639

    Spindle oscillations are generated in the dorsal thalamus and modulated by the thalamic reticular nucleus

    Get PDF
    Spindle waves occur during the early stage of slow wave sleep and are thought to arise in the thalamic reticular nucleus (TRN), causing inhibitory postsynaptic potential spindle-like oscillations in the dorsal thalamus that are propagated to the cortex. We have found that thalamocortical neurons exhibit membrane oscillations that have spindle frequencies, consist of excitatory postsynaptic potentials, and co-occur with electroencephalographic spindles. TRN lesioning prolonged oscillations in the medial geniculate body (MGB) and auditory cortex (AC). Injection of GABA~A~ antagonist into the MGB decreased oscillation frequency, while injection of GABA~B~ antagonist increased spindle oscillations in the MGB and cortex. Thus, spindles originate in the dorsal thalamus and TRN inhibitory inputs modulate this process, with fast inhibition facilitating the internal frequency and slow inhibition limiting spindle occurrence

    Natural characteristics analysis of aircraft wing box based on finite element method and measured data

    Get PDF
    Compared with other mechanical products, aircraft structures have more rigorous requirements on flying performance, safety, reliability and service life. Based on the finite element method (FEM), the key component of the wing box model is explored in this paper, which provides a reference for the structure design and manufacture of aircraft wing box. The three-dimensional point cloud data of components are obtained by optical measurement systems, the deviation analysis between the point cloud model and the nominal model is carried out as a prerequisite, and then the natural characteristics of the model is analyzed. The results show that 99.15 % of the measured points have deviations within 0.38 mm, which verifies the accuracy of the nominal model. The first six modes are all bending modal shape, and the larger amplitude region mainly occurs in the wing ribs, which means its bending strength should be improved for structure design. Besides, the sixth-mode simultaneously result in front spar, stringer and rib bending vibration

    Quantum phase transition of light in a 1-D photon-hopping-controllable resonator array

    Full text link
    We give a concrete experimental scheme for engineering the insulator-superfluid transition of light in a one-dimensional (1-D) array of coupled superconducting stripline resonators. In our proposed architecture, the on-site interaction and the photon hopping rate can be tuned independently by adjusting the transition frequencies of the charge qubits inside the resonators and at the resonator junctions, respectively, which permits us to systematically study the quantum phase transition of light in a complete parameter space. By combining the techniques of photon-number-dependent qubit transition and fast read-out of the qubit state using a separate low-Q resonator mode, the statistical property of the excitations in each resonator can be obtained with a high efficiency. An analysis of the various decoherence sources and disorders shows that our scheme can serve as a guide to coming experiments involving a small number of coupled resonators.Comment: 7 pages, 4 figure
    corecore